

Welcome to PsychRNN’s documentation!

[image: Build Status]
 [https://api.travis-ci.com/murraylab/PsychRNN][image: codecov]
 [https://codecov.io/gh/murraylab/PsychRNN]This package is intended to help cognitive scientists easily translate task designs from human or primate behavioral experiments into a form capable of being used as training data for a recurrent neural network.

We have isolated the front-end task design, in which users can intuitively describe the conditional logic of their task from the backend where gradient descent based optimization occurs. This is intended to facilitate researchers who might otherwise not have an easy implementation available to design and test hypothesis regarding the behavior of recurrent neural networks in different task environements.

Start with Hello World to get a quick sense of what PsychRNN does. Then go through the Simple Example to get a feel for how to customize PsychRNN. The rest of Getting Started will help guide you through using available features, defining your own task, and even defining your own model.

Release announcments are posted on the psychrnn mailing list [https://www.freelists.org/list/psychrnn] and on GitHub [https://github.com/murraylab/PsychRNN].

Code is written and upkept by: Daniel B. Ehrlich [https://github.com/dbehrlich], Jasmine T. Stone [https://github.com/syncrostone/], David Brandfonbrener [https://github.com/davidbrandfonbrener], and Alex Atanasov [https://github.com/ABAtanasov].

Contact: psychrnn@gmail.com

Installation Guide

System requirements

	python = 2.7 or python >= 3.4

	numpy [http://www.numpy.org/]

	tensorflow [https://www.tensorflow.org/] >= 1.13.1

	For notebook demos, jupyter [https://jupyter.org/]

	For notebook demos, ipython [https://ipython.org/]

	For plotting features, matplotlib [https://matplotlib.org/]

PsychRNN was developed to work with both Python 2.7 and 3.4+ using TensorFlow 1.13.1+. It is currently being tested on Python 2.7 and 3.4-3.8 with TensorFlow 1.13.1-2.2.

Note

TensorFlow 2.2 does not support Python < 3.5. Only TensorFlow 1.13.1-1.14 are compatible with Python 3.4. Python 3.8 is only supported by TensorFlow 2.2.

Installation

Normally, you can install with:

pip install psychrnn=1.0.0

Alternatively, you can download and extract the source files from the GitHub release [https://github.com/murraylab/psychrnn/releases/tag/v1.0.0]. Within the downloaded PsychRNN-v1.0.0 folder, run:

python setup.py install

If you’re concerned about clashing dependencies, PsychRNN can be installed
in a new conda environment:

conda create -n psychrnn python=3.6
conda activate psychrnn
pip install psychrnn=1.0.0

[THIS OPTION IS NOT RECOMMENDED FOR MOST USERS] To get the most recent (not necessarily stable) version from the github repo, clone the repository and install:

git clone https://github.com/murraylab/PsychRNN.git
cd PsychRNN
python setup.py install

Contributing

Please report bugs to https://github.com/murraylab/psychrnn/issues. This
includes any problems with the documentation. Fixes (in the form of
pull requests) for bugs are greatly appreciated.

Feature requests are welcome but may or may not be accepted due to limited
resources. If you implement the feature yourself we are open
to accepting it in PsychRNN. If you implement a new feature in PsychRNN,
please do the following before submitting a pull request on GitHub:

	Make sure your code is clean and well commented

	If appropriate, update the official documentation in the docs/
directory

	Write unit tests and optionally integration tests for your new
feature in the tests/ folder.

	Ensure all existing tests pass (pytest returns without
error)

For all other questions or comments, contact psychrnn@gmail.com.

API Documentation

Contents:

	Backend
	Base RNN Object

	Implemented RNN Models

	Backend Modules

	Tasks
	Base Task Object

	Implemented Example Tasks

Backend

Base RNN Object

Classes:

	RNN(params)

	The base recurrent neural network class.

	
class psychrnn.backend.rnn.RNN(params)

	Bases: abc.ABC

The base recurrent neural network class.

Note

The base RNN class is not itself a functioning RNN.
forward_pass must be implemented to define a functioning RNN.

	Parameters

	
	params (dict) – The RNN parameters. Use your tasks’s get_task_params() function to start building this dictionary. Optionally use a different network’s get_weights() function to initialize the network with preexisting weights.

	
	Dictionary Keys:
	
	name (str) – Unique name used to determine variable scope. Having different variable scopes allows multiple distinct models to be instantiated in the same TensorFlow environment. See TensorFlow’s variable_scope [https://www.tensorflow.org/api_docs/python/tf/compat/v1/variable_scope] for more details.

	N_in (int) – The number of network inputs.

	N_rec (int) – The number of recurrent units in the network.

	N_out (int) – The number of network outputs.

	N_steps (int): The number of simulation timesteps in a trial.

	dt (float) – The simulation timestep.

	tau (float) – The intrinsic time constant of neural state decay.

	N_batch (int) – The number of trials per training update.

	rec_noise (float, optional) – How much recurrent noise to add each time the new state of the network is calculated. Default: 0.0.

	transfer_function (function, optional) – Transfer function to use for the network. Default: tf.nn.relu [https://www.tensorflow.org/api_docs/python/tf/nn/relu].

	load_weights_path (str, optional) – When given a path, loads weights from file in that path. Default: None

	initializer (WeightInitializer or child object, optional) – Initializer to use for the network. Default: WeightInitializer (params) if params includes W_rec or load_weights_path as a key, GaussianSpectralRadius (params) otherwise.

	W_in_train (bool, optional) – True if input weights, W_in, are trainable. Default: True

	W_rec_train (bool, optional) – True if recurrent weights, W_rec, are trainable. Default: True

	W_out_train (bool, optional) – True if output weights, W_out, are trainable. Default: True

	b_rec_train (bool, optional) – True if recurrent bias, b_rec, is trainable. Default: True

	b_out_train (bool, optional) – True if output bias, b_out, is trainable. Default: True

	init_state_train (bool, optional) – True if the inital state for the network, init_state, is trainable. Default: True

	loss_function (str, optional) – Which loss function to use. See psychrnn.backend.loss_functions.LossFunction for details. Defaults to "mean_squared_error".

	Other Dictionary Keys

	
	Any dictionary keys used by the regularizer will be passed onwards to psychrnn.backend.regularizations.Regularizer. See Regularizer for key names and details.

	Any dictionary keys used for the loss function will be passed onwards to psychrnn.backend.loss_functions.LossFunction. See LossFunction for key names and details.

	If initializer is not set, any dictionary keys used by the initializer will be pased onwards to WeightInitializer if load_weights_path is set or W_rec is passed in. Otherwise all keys will be passed to GaussianSpectralRadius

	If initializer is not set and load_weights_path is not set, the dictionary entries returned previously by get_weights() can be passed in to initialize the network. See WeightInitializer for a list and explanation of possible parameters. At a minimum, W_rec must be included as a key to make use of this option.

	If initializer is not set and load_weights_path is not set, the following keys can be used to set biological connectivity constraints:

	input_connectivity (ndarray(dtype=float, shape=(N_rec, N_in)), optional) – Connectivity mask for the input layer. 1 where connected, 0 where unconnected. Default: np.ones((N_rec, N_in)).

	rec_connectivity (ndarray(dtype=float, shape=(N_rec, N_rec)), optional) – Connectivity mask for the recurrent layer. 1 where connected, 0 where unconnected. Default: np.ones((N_rec, N_rec)).

	output_connectivity (ndarray(dtype=float, shape=(N_out, N_rec)), optional) – Connectivity mask for the output layer. 1 where connected, 0 where unconnected. Default: np.ones((N_out, N_rec)).

	autapses (bool, optional) – If False, self connections are not allowed in N_rec, and diagonal of rec_connectivity will be set to 0. Default: True.

	dale_ratio (float, optional) – Dale’s ratio, used to construct Dale_rec and Dale_out. 0 <= dale_ratio <=1 if dale_ratio should be used. dale_ratio * N_rec recurrent units will be excitatory, the rest will be inhibitory. Default: None

	Inferred Parameters:
	
	alpha (float) – The number of unit time constants per simulation timestep.

Methods:

	build()

	Build the TensorFlow network and start a TensorFlow session.

	destruct()

	Close the TensorFlow session and reset the global default graph.

	forward_pass()

	Run the RNN on a batch of task inputs.

	get_effective_W_in()

	Get the input weights used in the network, after masking by connectivity and dale_ratio.

	get_effective_W_out()

	Get the output weights used in the network, after masking by connectivity, and dale_ratio.

	get_effective_W_rec()

	Get the recurrent weights used in the network, after masking by connectivity and dale_ratio.

	get_weights()

	Get weights used in the network.

	save(save_path)

	Save the weights returned by get_weights() to save_path

	test(trial_batch)

	Test the network on a certain task input.

	train(trial_batch_generator[, train_params])

	Train the network.

	train_curric(train_params)

	Wrapper function for training with curriculum to streamline curriculum learning.

	
build()

	Build the TensorFlow network and start a TensorFlow session.

	
destruct()

	Close the TensorFlow session and reset the global default graph.

	
abstract forward_pass()

	Run the RNN on a batch of task inputs.

Note

This is an abstract function that must be defined in a child class.

	Returns

	
	predictions (ndarray(dtype=float, shape=(N_batch, N_steps, N_out))) – Network output on inputs found in self.x within the tf network.

	states (ndarray(dtype=float, shape=(N_batch, N_steps, N_rec))) – State variable values over the course of the trials found in self.x within the tf network.

	Return type

	tuple

	
get_effective_W_in()

	Get the input weights used in the network, after masking by connectivity and dale_ratio.

	Returns

	tf.Tensor(dtype=float, shape=(N_rec, N_in))

	
get_effective_W_out()

	Get the output weights used in the network, after masking by connectivity, and dale_ratio.

	Returns

	tf.Tensor(dtype=float, shape=(N_out, N_rec))

	
get_effective_W_rec()

	Get the recurrent weights used in the network, after masking by connectivity and dale_ratio.

	Returns

	tf.Tensor(dtype=float, shape=(N_rec, N_rec))

	
get_weights()

	Get weights used in the network.

Allows for rebuilding or tweaking different weights to do experiments / analyses.

	Returns

	Dictionary of rnn weights including the following keys:

	Dictionary Keys

	
	init_state (ndarray(dtype=float, shape=(1, :attr:`N_rec` *))) – Initial state of the network’s recurrent units.

	W_in (ndarray(dtype=float, shape=(:attr:`N_rec`. :attr:`N_in` *))) – Input weights.

	W_rec (ndarray(dtype=float, shape=(:attr:`N_rec`, :attr:`N_rec` *))) – Recurrent weights.

	W_out (ndarray(dtype=float, shape=(:attr:`N_out`, :attr:`N_rec` *))) – Output weights.

	b_rec (ndarray(dtype=float, shape=(:attr:`N_rec`, *))) – Recurrent bias.

	b_out (ndarray(dtype=float, shape=(:attr:`N_out`, *))) – Output bias.

	Dale_rec (ndarray(dtype=float, shape=(:attr:`N_rec`, :attr:`N_rec`))*) – Diagonal matrix with ones and negative ones on the diagonal. If dale_ratio is not None, indicates whether a recurrent unit is excitatory(1) or inhibitory(-1).

	Dale_out (ndarray(dtype=float, shape=(:attr:`N_rec`, :attr:`N_rec`))*) – Diagonal matrix with ones and zeroes on the diagonal. If dale_ratio is not None, indicates whether a recurrent unit is excitatory(1) or inhibitory(0). Inhibitory neurons do not contribute to the output.

	input_connectivity (ndarray(dtype=float, shape=(:attr:`N_rec`, :attr:`N_in`))*) – Connectivity mask for the input layer. 1 where connected, 0 where unconnected.

	rec_connectivity (ndarray(dtype=float, shape=(:attr:`N_rec`, :attr:`N_rec`))*) – Connectivity mask for the recurrent layer. 1 where connected, 0 where unconnected.

	output_connectivity (ndarray(dtype=float, shape=(:attr:`N_out`, :attr:`N_rec`))*) – Connectivity mask for the output layer. 1 where connected, 0 where unconnected.

	dale_ratio (float) – Dale’s ratio, used to construct Dale_rec and Dale_out. Either None if dale’s law was not applied, or 0 <= dale_ratio <=1 if dale_ratio was applied.

Note

Keys returned may be different / include other keys depending on the implementation of RNN used. A different set of keys will be included e.g. if the LSTM implementation is used. The set of keys above is accurate and meaningful for the Basic and BasicScan implementations.

	Return type

	dict

	
save(save_path)

	Save the weights returned by get_weights() to save_path

	Parameters

	save_path (str) – Path for where to save the network weights.

	
test(trial_batch)

	Test the network on a certain task input.

	Parameters

	trial_batch ((ndarray(dtype=float, shape =(N_batch, N_steps, N_out))) – Task stimulus to run the network on. Stimulus from psychrnn.tasks.task.Task.get_trial_batch(), or from next(psychrnn.tasks.task.Task.batch_generator()).

	Returns

	
	outputs (ndarray(dtype=float, shape =(N_batch, N_steps, N_out))) – Output time series of the network for each trial in the batch.

	states (ndarray(dtype=float, shape =(N_batch, N_steps, N_rec))) – Activity of recurrent units during each trial.

	Return type

	tuple

	
train(trial_batch_generator, train_params={})

	Train the network.

	Parameters

	
	trial_batch_generator (Task object or Generator[tuple, None, None]) – the task to train on, or the task to train on’s batch_generator. If a task is passed in, task.:func:batch_generator () will be called to get the generator for the task to train on.

	train_params (dict, optional) – Dictionary of training parameters containing the following possible keys:

	Dictionary Keys

	
	learning_rate (float, optional) – Sets learning rate if use default optimizer Default: .001

	training_iters (int, optional) – Number of iterations to train for Default: 50000.

	loss_epoch (int, optional) – Compute and record loss every ‘loss_epoch’ epochs. Default: 10.

	verbosity (bool, optional) – If true, prints information as training progresses. Default: True.

	save_weights_path (str, optional) – Where to save the model after training. Default: None

	save_training_weights_epoch (int, optional) – Save training weights every ‘save_training_weights_epoch’ epochs. Weights only actually saved if training_weights_path is set. Default: 100.

	training_weights_path (str, optional) – What directory to save training weights into as training progresses. Default: None.

	curriculum (~psychrnn.backend.curriculum.Curriculum object, optional) – Curriculum to train on. If a curriculum object is provided, it overrides the trial_batch_generator argument. Default: None.

	optimizer (tf.compat.v1.train.Optimizer [https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/Optimizer] object, optional) – What optimizer to use to compute gradients. Default: tf.train.AdamOptimizer [https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/AdamOptimizer] (learning_rate=:data:train_params`[‘learning_rate’]).

	clip_grads (bool, optional) – If true, clip gradients by norm 1. Default: True

	fixed_weights (dict, optional) – By default all weights are allowed to train unless fixed_weights or W_rec_train, W_in_train, or W_out_train are set. Default: None. Dictionary of weights to fix (not allow to train) with the following optional keys:

	Fixed Weights Dictionary Keys (in case of Basic and BasicScan implementations)
	
	W_in (ndarray(dtype=bool, shape=(:attr:`N_rec`. :attr:`N_in` *)), optional) – True for input weights that should be fixed during training.

	W_rec (ndarray(dtype=bool, shape=(:attr:`N_rec`, :attr:`N_rec` *)), optional) – True for recurrent weights that should be fixed during training.

	W_out (ndarray(dtype=bool, shape=(:attr:`N_out`, :attr:`N_rec` *)), optional) – True for output weights that should be fixed during training.

	Note

	In general, any key in the dictionary output by get_weights() can have a key in the fixed_weights matrix, however fixed_weights will only meaningfully apply to trainable matrices.

	performance_cutoff (float) – If performance_measure is not None, training stops as soon as performance_measure surpases the performance_cutoff. Default: None.

	performance_measure (function) – Function to calculate the performance of the network using custom criteria. Default: None.

	Arguments

	
	trial_batch (ndarray(dtype=float, shape =(N_batch, N_steps, N_out))): Task stimuli for N_batch trials.

	trial_y (ndarray(dtype=float, shape =(N_batch, N_steps, N_out))): Target output for the network on N_batch trials given the trial_batch.

	output_mask (ndarray(dtype=bool, shape =(N_batch, N_steps, N_out))): Output mask for N_batch trials. True when the network should aim to match the target output, False when the target output can be ignored.

	output (ndarray(dtype=bool, shape =(N_batch, N_steps, N_out))): Output to compute the accuracy of. output as returned by psychrnn.backend.rnn.RNN.test().

	epoch (int): Current training epoch (e.g. perhaps the performance_measure is calculated differently early on vs late in training)

	losses (list of float): List of losses from the beginning of training until the current epoch.

	verbosity (bool): Passed in from train_params.

	Returns

	float

Performance, greater when the performance is better.

	Returns

	
	losses (list of float) – List of losses, computed every loss_epoch epochs during training.

	training_time (float) – Time spent training.

	initialization_time (float) – Time spent initializing the network and preparing to train.

	Return type

	tuple

	
train_curric(train_params)

	Wrapper function for training with curriculum to streamline curriculum learning.

	Parameters

	train_params (dict, optional) – See train() for details.

	Returns

	See train() for details.

	Return type

	tuple

Implemented RNN Models

Basic (Vanilla) RNNs

Classes:

	Basic(params)

	The basic continuous time recurrent neural network model.

	BasicScan(params)

	The basic continuous time recurrent neural network model implemented with tf.scan [https://www.tensorflow.org/api_docs/python/tf/scan] .

	
class psychrnn.backend.models.basic.Basic(params)

	Bases: psychrnn.backend.rnn.RNN

The basic continuous time recurrent neural network model.

Basic implementation of psychrnn.backend.rnn.RNN with a simple RNN, enabling biological constraints.

	Parameters

	params (dict) – See psychrnn.backend.rnn.RNN for details.

Methods:

	forward_pass()

	Run the RNN on a batch of task inputs.

	output_timestep(state)

	Returns the output node activity for a given timestep.

	recurrent_timestep(rnn_in, state)

	Recurrent time step.

	
forward_pass()

	Run the RNN on a batch of task inputs.

Iterates over timesteps, running the recurrent_timestep() and output_timestep()

Implements psychrnn.backend.rnn.RNN.forward_pass().

	Returns

	
	predictions (tf.Tensor(N_batch, N_steps, N_out))) – Network output on inputs found in self.x within the tf network.

	states (tf.Tensor(N_batch, N_steps, N_rec))) – State variable values over the course of the trials found in self.x within the tf network.

	Return type

	tuple

	
output_timestep(state)

	Returns the output node activity for a given timestep.

	Parameters

	state (tf.Tensor(dtype=float, shape=(N_batch , N_rec))) – State of network at a given timepoint for each trial in the batch.

	Returns

	Output of the network at a given timepoint for each trial in the batch.

	Return type

	output (tf.Tensor(dtype=float, shape=(N_batch , N_out)))

	
recurrent_timestep(rnn_in, state)

	Recurrent time step.

Given input and previous state, outputs the next state of the network.

	Parameters

	
	rnn_in (tf.Tensor(dtype=float, shape=(?, N_in))) – Input to the rnn at a certain time point.

	state (tf.Tensor(dtype=float, shape=(N_batch , N_rec))) – State of network at previous time point.

	Returns

	New state of the network.

	Return type

	new_state (tf.Tensor(dtype=float, shape=(N_batch , N_rec)))

	
class psychrnn.backend.models.basic.BasicScan(params)

	Bases: psychrnn.backend.models.basic.Basic

The basic continuous time recurrent neural network model implemented with tf.scan [https://www.tensorflow.org/api_docs/python/tf/scan] .

Produces the same results as Basic, with possible differences in execution time.

	Parameters

	params (dict) – See psychrnn.backend.rnn.RNN for details.

Methods:

	forward_pass()

	Run the RNN on a batch of task inputs.

	output_timestep(dummy, state)

	Wrapper function for psychrnn.backend.models.basic.Basic.output_timestep().

	recurrent_timestep(state, rnn_in)

	Wrapper function for psychrnn.backend.models.basic.Basic.recurrent_timestep().

	
forward_pass()

	Run the RNN on a batch of task inputs.

Iterates over timesteps, running the recurrent_timestep() and output_timestep()

Implements psychrnn.backend.rnn.RNN.forward_pass().

	Returns

	
	predictions (tf.Tensor(N_batch, N_steps, N_out))) – Network output on inputs found in self.x within the tf network.

	states (tf.Tensor(N_batch, N_steps, N_rec))) – State variable values over the course of the trials found in self.x within the tf network.

	Return type

	tuple

	
output_timestep(dummy, state)

	Wrapper function for psychrnn.backend.models.basic.Basic.output_timestep().

Includes additional dummy argument to facilitate tf.scan [https://www.tensorflow.org/api_docs/python/tf/scan].

	Parameters

	
	dummy – Dummy variable provided by tf.scan. Not actually used by the function.

	state (tf.Tensor(dtype=float, shape=(N_batch , N_rec))) – State of network at a given timepoint for each trial in the batch.

	Returns

	Output of the network at a given timepoint for each trial in the batch.

	Return type

	output (tf.Tensor(dtype=float, shape=(N_batch , N_out)))

	
recurrent_timestep(state, rnn_in)

	Wrapper function for psychrnn.backend.models.basic.Basic.recurrent_timestep().

	Parameters

	
	state (tf.Tensor(dtype=float, shape=(N_batch , N_rec))) – State of network at previous time point.

	rnn_in (tf.Tensor(dtype=float, shape=(?, N_in))) – Input to the rnn at a certain time point.

	Returns

	New state of the network.

	Return type

	new_state (tf.Tensor(dtype=float, shape=(N_batch , N_rec)))

LSTM

Classes:

	LSTM(params)

	LSTM (Long Short Term Memory) recurrent network model

	
class psychrnn.backend.models.lstm.LSTM(params)

	Bases: psychrnn.backend.rnn.RNN

LSTM (Long Short Term Memory) recurrent network model

LSTM implementation of psychrnn.backend.rnn.RNN. Because LSTM is structured differently from the basic RNN, biological constraints such as dale’s, autapses, and connectivity are not enabled.

	Parameters

	params (dict) – See psychrnn.backend.rnn.RNN for details.

Methods:

	forward_pass()

	Run the LSTM on a batch of task inputs.

	output_timestep(hidden)

	Returns the output node activity for a given timestep.

	recurrent_timestep(rnn_in, hidden, cell)

	Recurrent time step.

	
forward_pass()

	Run the LSTM on a batch of task inputs.

Iterates over timesteps, running the recurrent_timestep() and output_timestep()

Implements psychrnn.backend.rnn.RNN.forward_pass().

	Returns

	
	predictions (tf.Tensor(N_batch, N_steps, N_out))) – Network output on inputs found in self.x within the tf network.

	hidden (tf.Tensor(N_batch, N_steps, N_rec))) – Hidden unit values over the course of the trials found in self.x within the tf network.

	Return type

	tuple

	
output_timestep(hidden)

	Returns the output node activity for a given timestep.

	Parameters

	hidden (tf.Tensor(dtype=float, shape=(N_batch , N_rec))) – Hidden units of network at a given timepoint for each trial in the batch.

	Returns

	Output of the network at a given timepoint for each trial in the batch.

	Return type

	output (tf.Tensor(dtype=float, shape=(N_batch , N_out)))

	
recurrent_timestep(rnn_in, hidden, cell)

	Recurrent time step.

Given input and previous state, outputs the next state of the network.

	Parameters

	
	rnn_in (tf.Tensor(dtype=float, shape=(?, N_in))) – Input to the rnn at a certain time point.

	hidden (tf.Tensor(dtype=float, shape=(N_batch , N_rec))) – Hidden units state of network at previous time point.

	cell (tf.Tensor(dtype=float, shape=(N_batch , N_rec))) – Cell state of the network at previous time point.

	Returns

	
	new_hidden (tf.Tensor(dtype=float, shape=(N_batch , N_rec))) – New hidden unit state of the network.

	new_cell (tf.Tensor(dtype=float, shape=(N_batch , N_rec))) – New cell state of the network.

	Return type

	tuple

Backend Modules

Initializations

Classes:

	AlphaIdentity(**kwargs)

	Generate recurrent weights [image: w(i,i) = alpha], [image: w(i,j) = 0] where [image: i \neq j].

	GaussianSpectralRadius(**kwargs)

	Generate random gaussian weights with specified spectral radius.

	WeightInitializer(**kwargs)

	Base Weight Initialization class.

	
class psychrnn.backend.initializations.AlphaIdentity(**kwargs)

	Bases: psychrnn.backend.initializations.WeightInitializer

Generate recurrent weights [image: w(i,i) = alpha], [image: w(i,j) = 0] where [image: i \neq j].

If Dale is set, balances the alpha excitatory and inhibitory weights using balance_dale_ratio(), so w(i,i) will not be exactly equal to alpha.

	Keyword Arguments

	alpha (float) – The value of alpha to set w(i,i) to in W_rec.

	Other Keyword Args:
	See WeightInitializer for details.

	
class psychrnn.backend.initializations.GaussianSpectralRadius(**kwargs)

	Bases: psychrnn.backend.initializations.WeightInitializer

Generate random gaussian weights with specified spectral radius.

If Dale is set, balances the random gaussian weights between excitatory and inhibitory using balance_dale_ratio() before applying the specified spectral radius.

	Keyword Arguments

	spec_rad (float, optional) – The spectral radius to initialize W_rec with. Default: 1.1.

	Other Keyword Args:
	See WeightInitializer for details.

	
class psychrnn.backend.initializations.WeightInitializer(**kwargs)

	Bases: object

Base Weight Initialization class.

Initializes biological constraints and network weights, optionally loading weights from a file or from passed in arrays.

	Keyword Arguments

	
	N_in (int) – The number of network inputs.

	N_rec (int) – The number of recurrent units in the network.

	N_out (int) – The number of network outputs.

	load_weights_path (str, optional) – Path to load weights from using np.load. Weights saved at that path should be in the form saved out by psychrnn.backend.rnn.RNN.save() Default: None.

	input_connectivity (ndarray(dtype=float, shape=(N_rec, N_in)), optional) – Connectivity mask for the input layer. 1 where connected, 0 where unconnected. Default: np.ones((N_rec, N_in)).

	rec_connectivity (ndarray(dtype=float, shape=(N_rec, N_rec)), optional) – Connectivity mask for the recurrent layer. 1 where connected, 0 where unconnected. Default: np.ones((N_rec, N_rec)).

	output_connectivity (ndarray(dtype=float, shape=(N_out, N_rec)), optional) – Connectivity mask for the output layer. 1 where connected, 0 where unconnected. Default: np.ones((N_out, N_rec)).

	autapses (bool, optional) – If False, self connections are not allowed in N_rec, and diagonal of rec_connectivity will be set to 0. Default: True.

	dale_ratio (float, optional) – Dale’s ratio, used to construct Dale_rec and Dale_out. 0 <= dale_ratio <=1 if dale_ratio should be used. dale_ratio * N_rec recurrent units will be excitatory, the rest will be inhibitory. Default: None

	which_rand_init (str, optional) – Which random initialization to use for W_in and W_out. Will also be used for W_rec if which_rand_W_rec_init is not passed in. Options: 'const_unif', 'const_gauss', 'glorot_unif', 'glorot_gauss'. Default: 'glorot_gauss'.

	which_rand_W_rec_init (str, optional) – Which random initialization to use for W_rec. Options: 'const_unif', 'const_gauss', 'glorot_unif', 'glorot_gauss'. Default: which_rand_init.

	init_minval (float, optional) – Used by const_unif_init() as minval if 'const_unif' is passed in for which_rand_init or which_rand_W_rec_init. Default: -.1.

	init_maxval (float, optional) – Used by const_unif_init() as maxval if 'const_unif' is passed in for which_rand_init or which_rand_W_rec_init. Default: .1.

	W_in (ndarray(dtype=float, shape=(N_rec, N_in)), optional) – Input weights. Default: Initialized using the function indicated by which_rand_init

	W_rec (ndarray(dtype=float, shape=(N_rec, N_rec)), optional) – Recurrent weights. Default: Initialized using the function indicated by which_rand_W_rec_init

	W_out (ndarray(dtype=float, shape=(N_out, N_rec)), optional) – Output weights. Defualt: Initialized using the function indicated by which_rand_init

	b_rec (ndarray(dtype=float, shape=(N_rec,)), optional) – Recurrent bias. Default: np.zeros(N_rec)

	b_out (ndarray(dtype=float, shape=(N_out,)), optional) – Output bias. Default: np.zeros(N_out)

	Dale_rec (ndarray(dtype=float, shape=(N_rec, N_rec)), optional) – Diagonal matrix with ones and negative ones on the diagonal. If dale_ratio is not None, indicates whether a recurrent unit is excitatory(1) or inhibitory(-1). Default: constructed based on dale_ratio

	Dale_out (ndarray(dtype=float, shape=(N_rec, N_rec)), optional) – Diagonal matrix with ones and zeroes on the diagonal. If dale_ratio is not None, indicates whether a recurrent unit is excitatory(1) or inhibitory(0). Inhibitory neurons do not contribute to the output. Default: constructed based on dale_ratio

	init_state (ndarray(dtype=float, shape=(1, N_rec)), optional) – Initial state of the network’s recurrent units. Default: .1 + .01 * np.random.randn(N_rec).

	
initializations

	Dictionary containing entries for input_connectivity, rec_connectivity, output_connectivity, dale_ratio, Dale_rec, Dale_out, W_in, W_rec, W_out, b_rec, b_out, and init_state.

	Type

	dict

Methods:

	balance_dale_ratio()

	If dale_ratio is not None, balances initializations['W_rec'] ‘s excitatory and inhibitory weights so the network will train.

	const_gauss_init(connectivity)

	Initialize ndarray of shape connectivity with values from a normal distribution.

	const_unif_init(connectivity)

	Initialize ndarray of shape connectivity with values uniform distribution with minimum init_minval and maximum init_maxval as set in WeightInitializer.

	get(tensor_name)

	Get tensor_name from initializations as a Tensor.

	get_dale_ratio()

	Returns the dale_ratio.

	get_rand_init_func(which_rand_init)

	Maps initialization function names (strings) to generating functions.

	glorot_gauss_init(connectivity)

	Initialize ndarray of shape connectivity with values from a glorot normal distribution.

	glorot_unif_init(connectivity)

	Initialize ndarray of shape connectivity with values from a glorot uniform distribution.

	save(save_path)

	Save initializations to save_path.

	
balance_dale_ratio()

	If dale_ratio is not None, balances initializations['W_rec'] ‘s excitatory and inhibitory weights so the network will train.

	
const_gauss_init(connectivity)

	Initialize ndarray of shape connectivity with values from a normal distribution.

	Parameters

	connectivity (ndarray) – 1 where connected, 0 where unconnected.

	Returns

	ndarray(dtype=float, shape=connectivity.shape)

	
const_unif_init(connectivity)

	Initialize ndarray of shape connectivity with values uniform distribution with minimum init_minval and maximum init_maxval as set in WeightInitializer.

	Parameters

	connectivity (ndarray) – 1 where connected, 0 where unconnected.

	Returns

	ndarray(dtype=float, shape=connectivity.shape)

	
get(tensor_name)

	Get tensor_name from initializations as a Tensor.

	Parameters

	tensor_name (str) – The name of the tensor to get. See initializations for options.

	Returns

	Tensor object

	
get_dale_ratio()

	Returns the dale_ratio.

[image: 0 \leq dale_ratio \leq 1] if dale_ratio should be used, dale_ratio = None otherwise. dale_ratio * N_rec recurrent units will be excitatory, the rest will be inhibitory.

	Returns

	Dale ratio, None if no dale ratio is set.

	Return type

	float

	
get_rand_init_func(which_rand_init)

	Maps initialization function names (strings) to generating functions.

	Parameters

	which_rand_init (str) – Maps to [which_rand_init]_init. Options are 'const_unif', 'const_gauss', 'glorot_unif', 'glorot_gauss'.

	Returns

	self.[which_rand_init]_init

	Return type

	function

	
glorot_gauss_init(connectivity)

	Initialize ndarray of shape connectivity with values from a glorot normal distribution.

Draws samples from a normal distribution centered on 0 with stddev
= sqrt(2 / (fan_in + fan_out)) where fan_in is the number of input units and fan_out is the number of output units. Respects the connectivity matrix.

	Parameters

	connectivity (ndarray) – 1 where connected, 0 where unconnected.

	Returns

	ndarray(dtype=float, shape=connectivity.shape)

	
glorot_unif_init(connectivity)

	Initialize ndarray of shape connectivity with values from a glorot uniform distribution.

Draws samples from a uniform distribution within [-limit, limit] where limit
is sqrt(6 / (fan_in + fan_out)) where fan_in is the number of input units and fan_out is the number of output units. Respects the connectivity matrix.

	Parameters

	connectivity (ndarray) – 1 where connected, 0 where unconnected.

	Returns

	ndarray(dtype=float, shape=connectivity.shape)

	
save(save_path)

	Save initializations to save_path.

	Parameters

	save_path (str) – File path for saving the initializations. The .npz extension will be appended if not already provided.

Loss Functions

Classes:

	LossFunction(params)

	Set the loss function for the RNN model.

	
class psychrnn.backend.loss_functions.LossFunction(params)

	Bases: object

Set the loss function for the RNN model.

	Parameters

	params (dict) – Dictionary of parameters including the following keys:

	Dictionary Keys

	
	loss_function (str) – String indicating what loss function to use. If params["loss_function"] is not mean_squared_error or binary_cross_entropy, params[params["loss_function"]] defines the custom loss function. Default: “mean_squared_error”.

	params[“loss_function”] (function, optional) – Defines the custom loss function. Must have the same signature as mean_squared_error() and binary_cross_entropy().

Methods:

	binary_cross_entropy(predictions, y, output_mask)

	Binary cross-entropy.

	mean_squared_error(predictions, y, output_mask)

	Mean squared error.

	set_model_loss(model)

	Returns the model loss, calculated as indicated by type (inferred from params["loss_function"].

	
binary_cross_entropy(predictions, y, output_mask)

	Binary cross-entropy.

Binary label values are assumed to be 0 and 1.

loss = mean(output_mask * -(y * log(predictions) + (1-y)* log(1-predictions)))

	Parameters

	
	predictions (tf.Tensor(dtype=float, shape =(N_batch, N_steps, N_out))) – Network output.

	y (tf.Tensor(dtype=float, shape =(?, N_steps, N_out))) – Target output.

	output_mask (tf.Tensor(dtype=float, shape =(?, N_steps, N_out))) – Output mask for N_batch trials. True when the network should aim to match the target output, False when the target output can be ignored.

	Returns

	Binary cross-entropy.

	Return type

	tf.Tensor(dtype=float)

	
mean_squared_error(predictions, y, output_mask)

	Mean squared error.

loss = mean(square(output_mask * (predictions - y)))

	Parameters

	
	predictions (tf.Tensor(dtype=float, shape =(N_batch, N_steps, N_out))) – Network output.

	y (tf.Tensor(dtype=float, shape =(?, N_steps, N_out))) – Target output.

	output_mask (tf.Tensor(dtype=float, shape =(?, N_steps, N_out))) – Output mask for N_batch trials. True when the network should aim to match the target output, False when the target output can be ignored.

	Returns

	Mean squared error.

	Return type

	tf.Tensor(dtype=float)

	
set_model_loss(model)

	Returns the model loss, calculated as indicated by type (inferred from params["loss_function"].

'mean_squared_error' indicates mean_squared_error(), 'binary_cross_entropy' indicates binary_cross_entropy().
If type is not one of the above options, custom_loss_function is used. The custom loss function would have been passed in to params as params[type].

	Parameters

	model (RNN object) – Model for which to calculate the regularization.

	Returns

	Model loss.

	Return type

	tf.Tensor(dtype=float)

Regularizations

Classes:

	Regularizer(params)

	Regularizer Class

	
class psychrnn.backend.regularizations.Regularizer(params)

	Bases: object

Regularizer Class

Class that aggregates all types of regularization used.

	Parameters

	params (dict) – The regularization parameters containing the following optional keys:

	Dictionary Keys

	
	L1_in (float, optional) – Parameter for weighting the L1 input weights regularization. Default: 0.

	L1_rec (float, optional) – Parameter for weighting the L1 recurrent weights regularization. Default: 0.

	L1_out (float, optional) – Parameter for weighting the L1 output weights regularization. Default: 0.

	L2_in (float, optional) – Parameter for weighting the L2 input weights regularization. Default: 0.

	L2_rec (float, optional) – Parameter for weighting the L2 recurrent weights regularization. Default: 0.

	L2_out (float, optional) – Parameter for weighting the L2 output weights regularization. Default: 0.

	L2_firing_rate (float, optional) – Parameter for weighting the L2 regularization of the relu thresholded states. Default: 0.

	custom_regularization (function, optional) – Custom regularization function. Default: None.

	Args:
	
	model (RNN object) – Model for which to calculate the regularization.

	params (dict) – Regularization parameters. All params passed to the Regularizer will be passed here.

	Returns:
	tf.Tensor(dtype=float)– The custom regularization to add when calculating the loss.

Methods:

	L1_weight_reg(model)

	L1 regularization

	L2_firing_rate_reg(model)

	L2 regularization of the firing rate.

	L2_weight_reg(model)

	L2 regularization

	set_model_regularization(model)

	Given model, calculate the regularization by adding all regualarization terms (scaled with the parameters to be either zero or nonzero).

	
L1_weight_reg(model)

	L1 regularization

[image: regularization = L1_in * ||W_in||_1 + L1_rec * ||W_rec||_1 + L1_out * ||W_out||_1]

	Parameters

	model (RNN object) – Model for which to calculate the regularization.

	Returns

	The L1 regularization to add when calculating the loss.

	Return type

	tf.Tensor(dtype=float)

	
L2_firing_rate_reg(model)

	L2 regularization of the firing rate.

[image: regularization = L2_firing_rate * ||relu(states)||_2^2]

	Parameters

	model (RNN object) – Model for which to calculate the regularization.

	Returns

	The L2 firing rate regularization to add when calculating the loss.

	Return type

	tf.Tensor(dtype=float)

	
L2_weight_reg(model)

	L2 regularization

[image: regularization = L2_in * ||W_in||_2^2 + L2_rec * ||W_rec||_2^2 + L2_out * ||W_out||_2^2]

	Parameters

	model (RNN object) – Model for which to calculate the regularization.

	Returns

	The L2 regularization to add when calculating the loss.

	Return type

	tf.Tensor(dtype=float)

	
set_model_regularization(model)

	Given model, calculate the regularization by adding all regualarization terms (scaled with the parameters to be either zero or nonzero).

The following regularizations are added: L1_weight_reg(), L2_weight_reg(), and L2_firing_rate_reg().

	Parameters

	model (RNN object) – Model for which to calculate the regularization.

	Returns

	The regularization to add when calculating the loss.

	Return type

	tf.Tensor(dtype=float)

Curriculum

Classes:

	Curriculum(tasks, **kwargs)

	Curriculum object.

Functions:

	default_metric(curriculum_params, …)

	Default metric to use to evaluate performance when using Curriculum learning.

	
class psychrnn.backend.curriculum.Curriculum(tasks, **kwargs)

	Bases: object

Curriculum object.

Allows training on a sequence of tasks when Curriculum is passed into train().

	Parameters

	
	tasks (list of Task objects) – List of tasks to use in the curriculum.

	metric (function, optional) – Function for calculating whether the stage advances and what the metric value is at each metric_epoch. Default: default_metric().

	Arguments

	
	curriculum_params (dict) – Dictionary of the Curriculum object parameters, containing the following keys:

	Dictionary Keys

	
	stop_training (bool) – True if the network has finished training and completed all stages.

	stage (int) – Current training stage (initial stage is 0).

	metric_values (list of [float, int]) – List of metric values and the stage at which each metric value was computed.

	tasks (list of :class:`psychrnn.tasks.task.Task` objects) – List of tasks in the curriculum.

	metric (function) – What metric function to use. default_metric() is an example of one in terms of inputs and outputs taken.

	accuracies (list of functions) – Accuracy function to use at each stage.

	thresholds (list of float) – Thresholds for each stage that accuracy must reach to move to the next stage.

	metric_epoch (int) – Calculate the metric and test if the model should advance to the next stage every metric_epoch training epochs.

	output_file (str) – Optional path for saving out themetric value and stage. If the .npz filename extension is not included, it will be appended.

	input_data (ndarray(dtype=float, shape =(N_batch, N_steps, N_out))) – Task inputs.

	correct_output (ndarray(dtype=float, shape = (N_batch, N_steps, N_out))) – Correct (target) task output given input_data.

	output_mask (ndarray(dtype=float, shape = (N_batch, N_steps, N_out))) – Output mask for the task. True when the network should aim to match the target output, False when the target output can be ignored.

	output (ndarray(dtype=float, shape = (N_batch, N_steps, N_out))) – The network’s output given input_data.

	epoch (int) – The epoch number in training.

	losses (list of float) – List of losses, computed during training.

	verbosity (bool) – Whether to print information as training progresses.

	Returns

	tuple

	advance (bool) – True if the the stage should be advanced. False otherwise.

	metric_value (float) – Value of the computed metric.

	accuracies (list of functions, optional) – Optional list of functions to use to calculate network performance for the purposes of advancing tasks. Used by default_metric() to compute accuracy. Default: [tasks[i].accuracy_function for i in range(len(tasks))].

	thresholds (list of float, optional) – Optional list of thresholds. If metric = default_metric, accuracies must reach the threshold for a given stage in order to advance to the next stage. Default: [.9 for i in range(len(tasks))]

	metric_epoch (int) – Calculate the metric and test if the model should advance to the next stage every metric_epoch training epochs. Default: 10

	output_file (str) – Optional path for saving out the metric value and stage. If the .npz filename extension is not included, it will be appended. Default: None.

Methods:

	get_generator_function()

	Return the generator function for the current task.

	metric_test(input_data, correct_output, …)

	Evaluates whether to advance the stage to the next task or not.

	
get_generator_function()

	Return the generator function for the current task.

	Returns

	Task batch generator for the task at the current stage.

	Return type

	psychrnn.tasks.task.Task.batch_generator() function

	
metric_test(input_data, correct_output, output_mask, test_output, epoch, losses, verbosity=False)

	Evaluates whether to advance the stage to the next task or not.

	Parameters

	
	input_data (ndarray(dtype=float, shape =(N_batch, N_steps, N_out))) – Task inputs.

	correct_output (ndarray(dtype=float, shape = (N_batch, N_steps, N_out))) – Correct (target) task output given input_data.

	output_mask (ndarray(dtype=float, shape = (N_batch, N_steps, N_out))) – Output mask for the task. True when the network should aim to match the target output, False when the target output can be ignored.

	test_output (ndarray(dtype=float, shape = (N_batch, N_steps, N_out))) – The network’s output given input_data.

	epoch (int) – The epoch number in training.

	losses (list of float) – List of losses, computed during training.

	verbosity (bool, optional) – Whether to print information as metric is computed and stages advanced. Default: False

	Returns

	True if stage advances, False otherwise.

	
psychrnn.backend.curriculum.default_metric(curriculum_params, input_data, correct_output, output_mask, output, epoch, losses, verbosity)

	Default metric to use to evaluate performance when using Curriculum learning.

Advance is true if accuracy >= threshold, False otherwise.

	Parameters

	
	curriculum_params (dict) – Dictionary of the Curriculum object parameters, containing the following keys:

	Dictionary Keys

	
	stop_training (bool) – True if the network has finished training and completed all stages.

	stage (int) – Current training stage (initial stage is 0).

	metric_values (list of [float, int]) – List of metric values and the stage at which each metric value was computed.

	tasks (list of :class:`psychrnn.tasks.task.Task` objects) – List of tasks in the curriculum.

	metric (function) – What metric function to use. default_metric() is an example of one in terms of inputs and outputs taken.

	accuracies (list of functions with the signature of psychrnn.tasks.task.Task.accuracy_function()) – Accuracy function to use at each stage.

	thresholds (list of float) – Thresholds for each stage that accuracy must reach to move to the next stage.

	metric_epoch (int) – Calculate the metric / test if advance to the next stage every metric_epoch training epochs.

	output_file (str) – Optional path for where to save out metric value and stage.

	input_data (ndarray(dtype=float, shape =(N_batch, N_steps, N_out))) – Task inputs.

	correct_output (ndarray(dtype=float, shape = (N_batch, N_steps, N_out))) – Correct (target) task output given input_data.

	output_mask (ndarray(dtype=float, shape = (N_batch, N_steps, N_out))) – Output mask for the task. True when the network should aim to match the target output, False when the target output can be ignored.

	output (ndarray(dtype=float, shape = (N_batch, N_steps, N_out))) – The network’s output given input_data.

	epoch (int) – The epoch number in training.

	losses (list of float) – List of losses, computed during training.

	verbosity (bool) – Whether to print information as training progresses. If True, prints accuracy every time it is computed.

	Returns

	
	advance (bool) – True if the accuracy is >= the threshold for the current stage. False otherwise.

	metric_value (float) – Value of the computed accuracy.

	Return type

	tuple

Simulation

Simulators implement the forward running of RNN models in NumPy, outside of the TensorFlow framework.

Classes:

	BasicSimulator([rnn_model, params, …])

	Simulator implementation for psychrnn.backend.models.basic.Basic and for psychrnn.backend.models.basic.BasicScan.

	LSTMSimulator([rnn_model, params, …])

	Simulator implementation for psychrnn.backend.models.lstm.LSTM and for psychrnn.backend.models.lstm.LSTM.

	Simulator([rnn_model, params, weights_path, …])

	The simulator class.

Functions:

	relu(x)

	NumPy implementation of tf.nn.relu [https://www.tensorflow.org/api_docs/python/tf/nn/relu]

	sigmoid(x)

	NumPy implementation of tf.nn.sigmoid [https://www.tensorflow.org/api_docs/python/tf/math/sigmoid]

	
class psychrnn.backend.simulation.BasicSimulator(rnn_model=None, params=None, weights_path=None, weights=None, transfer_function=<function relu>)

	Bases: psychrnn.backend.simulation.Simulator

Simulator implementation for psychrnn.backend.models.basic.Basic and for psychrnn.backend.models.basic.BasicScan.

See Simulator for arguments.

Methods:

	rnn_step(state, rnn_in, t_connectivity)

	Given input and previous state, outputs the next state and output of the network as a NumPy implementation of psychrnn.backend.models.basic.Basic.recurrent_timestep and of psychrnn.backend.models.basic.Basic.output_timestep.

	run_trials(trial_input[, t_connectivity])

	Test the network on a certain task input, optionally including ablation terms.

	
rnn_step(state, rnn_in, t_connectivity)

	Given input and previous state, outputs the next state and output of the network as a NumPy implementation of psychrnn.backend.models.basic.Basic.recurrent_timestep and of psychrnn.backend.models.basic.Basic.output_timestep.

Additionally takes in t_connectivity. If t_connectivity is all ones, rnn_step()’s output will match that of psychrnn.backend.models.basic.Basic.recurrent_timestep and psychrnn.backend.models.basic.Basic.output_timestep. Otherwise W_rec is multiplied by t_connectivity elementwise, ablating / perturbing the recurrent connectivity.

	Parameters

	
	state (ndarray(dtype=float, shape=(N_batch , N_rec))) – State of network at previous time point.

	rnn_in (ndarray(dtype=float, shape=(N_batch , N_in))) – State of network at previous time point.

	t_connectivity (ndarray(dtype=float, shape=(N_rec , N_rec))) – Matrix for ablating / perturbing W_rec.

	Returns

	
	new_output (ndarray(dtype=float, shape=(N_batch, N_out))) – Output of the network at a given timepoint for each trial in the batch.

	new_state (ndarray(dtype=float, shape=(N_batch, N_rec))) – New state of the network for each trial in the batch.

	Return type

	tuple

	
run_trials(trial_input, t_connectivity=None)

	Test the network on a certain task input, optionally including ablation terms.

A NumPy implementation of test() with additional options for ablation.

N_batch here is flexible and will be inferred from trial_input.

Repeatedly calls rnn_step() to build output and states over the entire timecourse of the trial_batch

	Parameters

	
	trial_batch ((ndarray(dtype=float, shape =(N_batch, N_steps, N_out))) – Task stimulus to run the network on. Stimulus from psychrnn.tasks.task.Task.get_trial_batch(), or from next(psychrnn.tasks.task.Task.batch_generator()).
To run the network autonomously without input, set input to an array of zeroes. N_steps will still indicate for how many steps to run the network.

	t_connectivity ((ndarray(dtype=float, shape =(N_steps, N_rec, N_rec))) – Matrix for ablating / perturbing W_rec. Passed step by step to rnn_step().

	Returns

	
	outputs (ndarray(dtype=float, shape =(N_batch, N_steps, N_out))) – Output time series of the network for each trial in the batch.

	states (ndarray(dtype=float, shape =(N_batch, N_steps, N_rec))) – Activity of recurrent units during each trial.

	Return type

	tuple

	
class psychrnn.backend.simulation.LSTMSimulator(rnn_model=None, params=None, weights_path=None, weights=None)

	Bases: psychrnn.backend.simulation.Simulator

Simulator implementation for psychrnn.backend.models.lstm.LSTM and for psychrnn.backend.models.lstm.LSTM.

See Simulator for arguments.

The contents of weights / np.load(weights_path) must now include the following additional keys:

	Dictionary Keys

	
	init_hidden (ndarray(dtype=float, shape=(N_batch , N_rec))) – Initial state of the cell state.

	init_hidden (ndarray(dtype=float, shape=(N_batch , N_rec))) – Initial state of the hidden state.

	W_f (ndarray(dtype=float, shape=(N_rec + N_in, N_rec))) – f term weights

	W_i (ndarray(dtype=float, shape=(N_rec + N_in, N_rec))) – i term weights

	W_c (ndarray(dtype=float, shape=(N_rec + N_in, N_rec))) – c term weights

	W_o (ndarray(dtype=float, shape=(N_rec + N_in, N_rec))) – o term weights

	b_f (ndarray(dtype=float, shape=(N_rec,))) – f term bias.

	b_i (ndarray(dtype=float, shape=(N_rec,))) – i term bias.

	b_c (ndarray(dtype=float, shape=(N_rec,))) – c term bias.

	b_o (ndarray(dtype=float, shape=(N_rec,))) – o term bias.

Methods:

	rnn_step(hidden, cell, rnn_in)

	Given input and previous state, outputs the next state and output of the network as a NumPy implementation of psychrnn.backend.models.lstm.LSTM.recurrent_timestep and of psychrnn.backend.models.lstm.LSTM.output_timestep.

	run_trials(trial_input)

	Test the network on a certain task input, optionally including ablation terms.

	
rnn_step(hidden, cell, rnn_in)

	Given input and previous state, outputs the next state and output of the network as a NumPy implementation of psychrnn.backend.models.lstm.LSTM.recurrent_timestep and of psychrnn.backend.models.lstm.LSTM.output_timestep.

	Parameters

	
	hidden (ndarray(dtype=float, shape=(N_batch , N_rec))) – Hidden units state of network at previous time point.

	cell (ndarray(dtype=float, shape=(N_batch , N_rec))) – Cell state of the network at previous time point.

	rnn_in (ndarray(dtype=float, shape=(N_batch , N_in))) – State of network at previous time point.

	Returns

	
	new_output (ndarray(dtype=float, shape=(N_batch, N_out))) – Output of the network at a given timepoint for each trial in the batch.

	new_hidden (ndarray(dtype=float, shape=(N_batch , N_rec))) – New hidden unit state of the network.

	new_cell (ndarray(dtype=float, shape=(N_batch , N_rec))) – New cell state of the network.

	Return type

	tuple

	
run_trials(trial_input)

	Test the network on a certain task input, optionally including ablation terms.

A NumPy implementation of test() with additional options for ablation.

N_batch here is flexible and will be inferred from trial_input.

Repeatedly calls rnn_step() to build output and states over the entire timecourse of the trial_batch

	Parameters

	trial_batch ((ndarray(dtype=float, shape =(N_batch, N_steps, N_out))) – Task stimulus to run the network on. Stimulus from psychrnn.tasks.task.Task.get_trial_batch(), or from next(psychrnn.tasks.task.Task.batch_generator()).
To run the network autonomously without input, set input to an array of zeroes. N_steps will still indicate for how many steps to run the network.

	Returns

	
	outputs (ndarray(dtype=float, shape =(N_batch, N_steps, N_out))) – Output time series of the network for each trial in the batch.

	states (ndarray(dtype=float, shape =(N_batch, N_steps, N_rec))) – Activity of recurrent units during each trial.

	Return type

	tuple

	
class psychrnn.backend.simulation.Simulator(rnn_model=None, params=None, weights_path=None, weights=None, transfer_function=<function relu>)

	Bases: abc.ABC

The simulator class.

Note

The base Simulator class is not itself a functioning Simulator.
run_trials and rnn_step must be implemented to define a functioning Simulator

	Parameters

	
	rnn_model (psychrnn.backend.rnn.RNN object, optional) – Uses the psychrnn.backend.rnn.RNN object to set alpha and rec_noise. Also used to initialize weights if weights and weights_path are not passed in. Default: None.

	weights_path (str, optional) – Where to load weights from. Take precedence over rnn_model weights. Default: rnn_model.get_weights(). np.load(weights_path) should return something of the form weights.

	transfer_function (function, optonal) – Function that takes an ndarray as input and outputs an ndarray of the same shape with the transfer / activation function applied. NumPy implementation of a TensorFlow transfer function. Default: relu().

	weights (dict, optional) – Takes precedence over both weights_path and rnn_model. Default: np.load(weights_path). Dictionary containing the following keys:

	Dictionary Keys

	
	init_state (ndarray(dtype=float, shape=(1, N_rec))) – Initial state of the network’s recurrent units.

	W_in (ndarray(dtype=float, shape=(N_rec. N_in))) – Input weights.

	W_rec (ndarray(dtype=float, shape=(N_rec, N_rec))) – Recurrent weights.

	W_out (ndarray(dtype=float, shape=(N_out, N_rec))) – Output weights.

	b_rec (ndarray(dtype=float, shape=(N_rec,))) – Recurrent bias.

	b_out (ndarray(dtype=float, shape=(N_out,))) – Output bias.

	params (dict, optional) –

	Dictionary Keys

	
	rec_noise (float, optional) – Amount of recurrent noise to add to the network. Default: 0

	alpha (float, optional) – The number of unit time constants per simulation timestep. Defaut: (1.0* dt) / tau

	dt (float, optional) – The simulation timestep. Used to calculate alpha if alpha is not passed in. Required if alpha is not in params and rnn_model is None.

	tau (float) – The intrinsic time constant of neural state decay. Used to calculate alpha if alpha is not passed in. Required if alpha is not in params and rnn_model is None.

Methods:

	rnn_step(state, rnn_in, t_connectivity)

	Given input and previous state, outputs the next state and output of the network.

	run_trials(trial_input[, t_connectivity])

	Test the network on a certain task input, optionally including ablation terms.

	
abstract rnn_step(state, rnn_in, t_connectivity)

	Given input and previous state, outputs the next state and output of the network.

Note

This is an abstract function that must be defined in a child class.

	Parameters

	
	state (ndarray(dtype=float, shape=(N_batch , N_rec))) – State of network at previous time point.

	rnn_in (ndarray(dtype=float, shape=(N_batch , N_in))) – State of network at previous time point.

	t_connectivity (ndarray(dtype=float, shape=(N_rec , N_rec))) – Matrix for ablating / perturbing W_rec.

	Returns

	
	new_output (ndarray(dtype=float, shape=(N_batch, N_out))) – Output of the network at a given timepoint for each trial in the batch.

	new_state (ndarray(dtype=float, shape=(N_batch, N_rec))) – New state of the network for each trial in the batch.

	Return type

	tuple

	
abstract run_trials(trial_input, t_connectivity=None)

	Test the network on a certain task input, optionally including ablation terms.

A NumPy implementation of test() with additional options for ablation.

N_batch here is flexible and will be inferred from trial_input.

	Parameters

	
	trial_batch ((ndarray(dtype=float, shape =(N_batch, N_steps, N_out))) – Task stimulus to run the network on. Stimulus from psychrnn.tasks.task.Task.get_trial_batch(), or from next(psychrnn.tasks.task.Task.batch_generator()). If you want the network to run autonomously, without input, set input to an array of zeroes, N_steps will still indicate how long to run the network.

	t_connectivity ((ndarray(dtype=float, shape =(N_steps, N_rec, N_rec))) – Matrix for ablating / perturbing W_rec. Passed step by step to rnn_step.

	Returns

	
	outputs (ndarray(dtype=float, shape =(N_batch, N_steps, N_out))) – Output time series of the network for each trial in the batch.

	states (ndarray(dtype=float, shape =(N_batch, N_steps, N_rec))) – Activity of recurrent units during each trial.

	Return type

	tuple

	
psychrnn.backend.simulation.relu(x)

	NumPy implementation of tf.nn.relu [https://www.tensorflow.org/api_docs/python/tf/nn/relu]

	Parameters

	x (ndarray) – array for which relu is computed.

	Returns

	np.maximum(x,0)

	Return type

	ndarray

	
psychrnn.backend.simulation.sigmoid(x)

	NumPy implementation of tf.nn.sigmoid [https://www.tensorflow.org/api_docs/python/tf/math/sigmoid]

	Parameters

	x (ndarray) – array for which sigmoid is computed.

	Returns

	1/(1 + np.exp(-x))

	Return type

	ndarray

Tasks

Base Task Object

Classes:

	Task(N_in, N_out, dt, tau, T, N_batch)

	The base task class.

	
class psychrnn.tasks.task.Task(N_in, N_out, dt, tau, T, N_batch)

	Bases: abc.ABC

The base task class.

The base task class provides the structure that users can use to define a new task. This structure is used by example tasks PerceptualDiscrimination, MatchToCategory, and DelayedDiscrimination.

Note

The base task class is not itself a functioning task.
The generate_trial_params and trial_function must be defined to define a new, functioning, task.

	Parameters

	
	N_in (int) – The number of network inputs.

	N_out (int) – The number of network outputs.

	dt (float) – The simulation timestep.

	tau (float) – The intrinsic time constant of neural state decay.

	T (float) – The trial length.

	N_batch (int) – The number of trials per training update.

	Inferred Parameters:
	
	alpha (float) – The number of unit time constants per simulation timestep.

	N_steps (int): The number of simulation timesteps in a trial.

Methods:

	accuracy_function(correct_output, …)

	Function to calculate accuracy (not loss) as it would be measured experimentally.

	batch_generator()

	Generates a batch of trials.

	generate_trial(params)

	Loop to generate a single trial.

	generate_trial_params(batch, trial)

	Define parameters for each trial.

	get_task_params()

	Get dictionary of task parameters.

	get_trial_batch()

	Get a batch of trials.

	trial_function(time, params)

	Compute the trial properties at time.

	
accuracy_function(correct_output, test_output, output_mask)

	Function to calculate accuracy (not loss) as it would be measured experimentally.

Output should range from 0 to 1. This function is used by Curriculum as part of it’s default_metric().

	Parameters

	
	correct_output (ndarray(dtype=float, shape =(N_batch, N_steps, N_out))) – Correct batch output. y_data as returned by batch_generator().

	test_output (ndarray(dtype=float, shape =(N_batch, N_steps, N_out))) – Output to compute the accuracy of. output as returned by psychrnn.backend.rnn.RNN.test().

	output_mask (ndarray(dtype=bool, shape =(N_batch, N_steps, N_out))) – Mask. mask as returned by func:batch_generator.

	Returns

	0 <= accuracy <=1

	Return type

	float

Warning

This function is abstract and may optionally be implemented in a child Task object.

Example

See PerceptualDiscrimination, MatchToCategory, and DelayedDiscrimination for example implementations.

	
batch_generator()

	Generates a batch of trials.

	Returns

	

	Return type

	Generator[tuple, None, None]

	Yields

	tuple –

	stimulus (ndarray(dtype=float, shape =(N_batch, N_steps, N_out))): Task stimuli for N_batch trials.

	target_output (ndarray(dtype=float, shape =(N_batch, N_steps, N_out))): Target output for the network on N_batch trials given the stimulus.

	output_mask (ndarray(dtype=bool, shape =(N_batch, N_steps, N_out))): Output mask for N_batch trials. True when the network should aim to match the target output, False when the target output can be ignored.

	trial_params (ndarray(dtype=dict, shape =(N_batch ,))): Array of dictionaries containing the trial parameters produced by generate_trial_params() for each trial in N_batch.

	
generate_trial(params)

	Loop to generate a single trial.

	Parameters

	params (dict) – Dictionary of trial parameters generated by generate_trial_params().

	Returns

	
	x_trial (ndarray(dtype=float, shape=(N_steps, N_in))) – Trial input given params.

	y_trial (ndarray(dtype=float, shape=(N_steps, N_out))) – Correct trial output given params.

	mask_trial (ndarray(dtype=bool, shape=(N_steps, N_out))) – True during steps where the network should train to match y, False where the network should ignore y during training.

	Return type

	tuple

	
abstract generate_trial_params(batch, trial)

	Define parameters for each trial.

Using a combination of randomness, presets, and task attributes, define the necessary trial parameters.

	Parameters

	
	batch (int) – The batch number for this trial.

	trial (int) – The trial number of the trial within the batch data:batch.

	Returns

	Dictionary of trial parameters.

	Return type

	dict

Warning

This function is abstract and must be implemented in a child Task object.

Example

See PerceptualDiscrimination, MatchToCategory, and DelayedDiscrimination for example implementations.

	
get_task_params()

	Get dictionary of task parameters.

Note

N_in, N_out, N_batch, dt, tau and N_steps must all be passed to the network model as parameters – this function is the recommended way to begin building the network_params that will be passed into the RNN model.

	Returns

	Dictionary of Task attributes including the following keys:

	Dictionary Keys

	
	N_batch (int) – The number of trials per training update.

	N_in (int) – The number of network inputs.

	N_out (int) – The number of network outputs.

	dt (float) – The simulation timestep.

	tau (float) – The unit time constant.

	T (float) – The trial length.

	alpha (float) – The number of unit time constants per simulation timestep.

	N_steps (int): The number of simulation timesteps in a trial.

Note

The dictionary will also include any other attributes defined in your task definition.

	Return type

	dict

	
get_trial_batch()

	Get a batch of trials.

Wrapper for next(self.batch_generator()).

	Returns

	
	stimulus (ndarray(dtype=float, shape =(N_batch, N_steps, N_in))): Task stimuli for N_batch trials.

	target_output (ndarray(dtype=float, shape =(N_batch, N_steps, N_out))): Target output for the network on N_batch trials given the stimulus.

	output_mask (ndarray(dtype=bool, shape =(N_batch, N_steps, N_out))): Output mask for N_batch trials. True when the network should aim to match the target output, False when the target output can be ignored.

	trial_params (ndarray(dtype=dict, shape =(N_batch ,))): Array of dictionaries containing the trial parameters produced by generate_trial_params() for each trial in N_batch.

	Return type

	tuple

	
abstract trial_function(time, params)

	Compute the trial properties at time.

Based on the :data:’params’ compute the trial stimulus (x_t), correct output (y_t), and mask (mask_t) at time.

	Parameters

	
	time (int) – The time within the trial (0 <= time < T).

	params (dict) – The trial params produced by generate_trial_params()

	Returns

	
	x_t (ndarray(dtype=float, shape=(N_in ,))) – Trial input at time given params.

	y_t (ndarray(dtype=float, shape=(N_out ,))) – Correct trial output at time given params.

	mask_t (ndarray(dtype=bool, shape=(N_out ,))) – True if the network should train to match the y_t, False if the network should ignore y_t when training.

	Return type

	tuple

Warning

This function is abstract and must be implemented in a child Task object.

Example

See PerceptualDiscrimination, MatchToCategory, and DelayedDiscrimination for example implementations.

Implemented Example Tasks

Delayed Discrimination Task

Classes:

	DelayedDiscrimination(dt, tau, T, N_batch[, …])

	Delayed discrimination task.

	
class psychrnn.tasks.delayed_discrim.DelayedDiscrimination(dt, tau, T, N_batch, onset_time=None, stim_duration_1=None, delay_duration=None, stim_duration_2=None, decision_duration=None)

	Bases: psychrnn.tasks.task.Task

Delayed discrimination task.

Following a fore period, the network receives an input, followed by a delay. After the delay the network receives a second input. The second input channel receives noisy input that is inversely ordered compared to the input received by the first input channel. The network must respond by activating the output node that corresponds to the input channel with the greater input as the first stimulus.

Takes two channels of noisy input (N_in = 2).
Two channel output (N_out = 2) with a one hot encoding (high value is 1, low value is .2).

Loosely based on Romo, R., Brody, C. D., Hernández, A., & Lemus, L. (1999). Neuronal correlates of
parametric working memory in the prefrontal cortex. Nature, 399(6735), 470. [https://www.nature.com/articles/20939]

	Parameters

	
	dt (float) – The simulation timestep.

	tau (float) – The intrinsic time constant of neural state decay.

	T (float) – The trial length.

	N_batch (int) – The number of trials per training update.

	onset_time (float, optional) – Stimulus onset time in terms of trial length T.

	stim_duration_1 (float, optional) – Stimulus 1 duration in terms of trial length T.

	delay_duration (float, optional) – Delay duration in terms of trial length T.

	stim_duration_2 (float, optional) – Stimulus 2 duration in terms of trial length T.

	decision_duration (float, optional) – Decision duration in terms of trial length T.

Methods:

	accuracy_function(correct_output, …)

	Calculates the accuracy of test_output.

	generate_trial_params(batch, trial)

	Define parameters for each trial.

	trial_function(t, params)

	Compute the trial properties at time.

	
accuracy_function(correct_output, test_output, output_mask)

	Calculates the accuracy of test_output.

Implements accuracy_function().

Takes the channel-wise mean of the masked output for each trial. Whichever channel has a greater mean is considered to be the network’s “choice”.

	Returns

	0 <= accuracy <= 1. Accuracy is equal to the ratio of trials in which the network made the correct choice as defined above.

	Return type

	float

	
generate_trial_params(batch, trial)

	Define parameters for each trial.

Implements generate_trial_params().

	Parameters

	
	batch (int) – The batch number that this trial is part of.

	trial (int) – The trial number of the trial within the batch batch.

	Returns

	Dictionary of trial parameters including the following keys:

	Dictionary Keys

	
	stimulus_1 (float) – Start time for stimulus one. onset_time.

	delay (float) – Start time for the delay. onset_time + stimulus_duration_1.

	stimulus_2 (float) – Start time in for stimulus one. onset_time + stimulus_duration_1 + delay_duration.

	decision (float) – Start time in for decision period. onset_time + stimulus_duration_1 + delay_duration + stimulus_duration_2.

	end (float) – End of decision period. onset_time + stimulus_duration_1 + delay_duration + stimulus_duration_2 + decision_duration.

	stim_noise (float) – Scales the stimlus noise. Set to .1.

	f1 (int) – Frequency of first stimulus.

	f2 (int) – Frequency of second stimulus.

	choice (str) – Indicates whether f1 is ‘>’ or ‘<’ f2.

	Return type

	dict

	
trial_function(t, params)

	Compute the trial properties at time.

Implements trial_function().

Based on the params compute the trial stimulus (x_t), correct output (y_t), and mask (mask_t) at time.

	Parameters

	
	time (int) – The time within the trial (0 <= time < T).

	params (dict) – The trial params produced by generate_trial_params().

	Returns

	
	x_t (ndarray(dtype=float, shape=(N_in ,))) – Trial input at time given params. First channel contains f1 during the first stimulus period, and f2 during the second stimulus period, scaled to be between .4 and 1.2. Second channel contains the frequencies but reverse scaled – high frequencies correspond to low values and vice versa. Both channels have baseline noise.

	y_t (ndarray(dtype=float, shape=(N_out ,))) – Correct trial output at time given params. The correct output is encoded using one-hot encoding during the decision period.

	mask_t (ndarray(dtype=bool, shape=(N_out ,))) – True if the network should train to match the y_t, False if the network should ignore y_t when training. The mask is True for during the decision period and False otherwise.

	Return type

	tuple

Match to Category Task

Classes:

	MatchToCategory(dt, tau, T, N_batch[, N_in, …])

	Multidirectional decision-making task.

	
class psychrnn.tasks.match_to_category.MatchToCategory(dt, tau, T, N_batch, N_in=16, N_out=2)

	Bases: psychrnn.tasks.task.Task

Multidirectional decision-making task.

On each trial the network receives input from units representing different locations on a ring. Each input unit magnitude represents closeness to the angle of input. The network must determine which side of arbitrary category boundaries the input belongs to and respond accordingly.

Takes N_in channels of noisy input arranged in a ring with gaussian signal around the ring centered at 0 at the stimulus angle.
N_out channel output arranged as slices of a ring with a one hot encoding towards the correct category output based on the angular location of the gaussian input bump.

Loosely based on Freedman, David J., and John A. Assad. “Experience-dependent representation of visual categories in parietal cortex.” Nature 443.7107 (2006): 85-88. [https://www.nature.com/articles/nature05078]

	Parameters

	
	dt (float) – The simulation timestep.

	tau (float) – The intrinsic time constant of neural state decay.

	T (float) – The trial length.

	N_batch (int) – The number of trials per training update.

	N_in (int, optional) – The number of network inputs. Defaults to 16.

	N_out (int, optional) – The number of network outputs. Defaults to 2.

Methods:

	accuracy_function(correct_output, …)

	Calculates the accuracy of test_output.

	generate_trial_params(batch, trial)

	Define parameters for each trial.

	trial_function(t, params)

	Compute the trial properties at time.

	
accuracy_function(correct_output, test_output, output_mask)

	Calculates the accuracy of test_output.

Implements accuracy_function().

Takes the channel-wise mean of the masked output for each trial. Whichever channel has a greater mean is considered to be the network’s “choice”.

	Returns

	0 <= accuracy <= 1. Accuracy is equal to the ratio of trials in which the network made the correct choice as defined above.

	Return type

	float

	
generate_trial_params(batch, trial)

	Define parameters for each trial.

Implements generate_trial_params().

	Parameters

	
	batch (int) – The batch number that this trial is part of.

	trial (int) – The trial number of the trial within the batch batch.

	Returns

	Dictionary of trial parameters including the following keys:

	Dictionary Keys

	
	angle (float) – Angle at which to center the gaussian. Randomly selected.

	category (int) – Index of the N_out category channel that contains the angle.

	onset_time (float) – Stimulus onset time. Set to 200.

	input_dur (float) – Stimulus duration. Set to 1000.

	output_dur (float) – Output duration. The time given to make a choice. Set to 800.

	stim_noise (float) – Scales the stimlus noise. Set to .1.

	Return type

	dict

	
trial_function(t, params)

	Compute the trial properties at time.

Implements trial_function().

Based on the params compute the trial stimulus (x_t), correct output (y_t), and mask (mask_t) at time.

	Parameters

	
	time (int) – The time within the trial (0 <= time < T).

	params (dict) – The trial params produced by generate_trial_params().

	Returns

	
	x_t (ndarray(dtype=float, shape=(N_in ,))) – Trial input at time given params. For params['onset_time'] < time < params['onset_time'] + params['input_dur'] , gaussian pdf with mean = angle and scale = 1 is added to each input channel based on the channel’s angle.

	y_t (ndarray(dtype=float, shape=(N_out ,))) – Correct trial output at time given params. 1 in the params['category'] output channel during the output period defined by params['output_dur'], 0 otherwise.

	mask_t (ndarray(dtype=bool, shape=(N_out ,))) – True if the network should train to match the y_t, False if the network should ignore y_t when training. True during the output period, False otherwise.

	Return type

	tuple

Perceptual Discrimination Task

Classes:

	PerceptualDiscrimination(dt, tau, T, N_batch)

	Two alternative forced choice (2AFC) binary discrimination task.

	
class psychrnn.tasks.perceptual_discrimination.PerceptualDiscrimination(dt, tau, T, N_batch, coherence=None, direction=None)

	Bases: psychrnn.tasks.task.Task

Two alternative forced choice (2AFC) binary discrimination task.

On each trial the network receives two simultaneous noisy inputs into each of two input channels. The network must determine which channel has the higher mean input and respond by driving the corresponding output unit to 1.

Takes two channels of noisy input (N_in = 2).
Two channel output (N_out = 2) with a one hot encoding (high value is 1, low value is .2) towards the higher mean channel.

Loosely based on Britten, Kenneth H., et al. “The analysis of visual motion: a comparison of neuronal and psychophysical performance.” Journal of Neuroscience 12.12 (1992): 4745-4765 [https://www.jneurosci.org/content/12/12/4745]

	Parameters

	
	dt (float) – The simulation timestep.

	tau (float) – The intrinsic time constant of neural state decay.

	T (float) – The trial length.

	N_batch (int) – The number of trials per training update.

	coherence (float, optional) – Amount by which the means of the two channels will differ. By default None.

	direction (int, optional) – Either 0 or 1, indicates which input channel will have higher mean input. By default None.

Methods:

	accuracy_function(correct_output, …)

	Calculates the accuracy of test_output.

	generate_trial_params(batch, trial)

	Define parameters for each trial.

	trial_function(t, params)

	Compute the trial properties at time.

	
accuracy_function(correct_output, test_output, output_mask)

	Calculates the accuracy of test_output.

Implements accuracy_function().

Takes the channel-wise mean of the masked output for each trial. Whichever channel has a greater mean is considered to be the network’s “choice”.

	Returns

	0 <= accuracy <= 1. Accuracy is equal to the ratio of trials in which the network made the correct choice as defined above.

	Return type

	float

	
generate_trial_params(batch, trial)

	Define parameters for each trial.

Implements generate_trial_params().

	Parameters

	
	batch (int) – The batch number that this trial is part of.

	trial (int) – The trial number of the trial within the batch batch.

	Returns

	Dictionary of trial parameters including the following keys:

	Dictionary Keys

	
	coherence (float) – Amount by which the means of the two channels will differ. self.coherence if not None, otherwise np.random.exponential(scale=1/5).

	direction (int) – Either 0 or 1, indicates which input channel will have higher mean input. self.direction if not None, otherwise np.random.choice([0, 1]).

	stim_noise (float) – Scales the stimlus noise. Set to .1.

	onset_time (float) – Stimulus onset time. np.random.random() * self.T / 2.0.

	stim_duration (float) – Stimulus duration. np.random.random() * self.T / 4.0 + self.T / 8.0.

	Return type

	dict

	
trial_function(t, params)

	Compute the trial properties at time.

Implements trial_function().

Based on the params compute the trial stimulus (x_t), correct output (y_t), and mask (mask_t) at time.

	Parameters

	
	time (int) – The time within the trial (0 <= time < T).

	params (dict) – The trial params produced by generate_trial_params().

	Returns

	
	x_t (ndarray(dtype=float, shape=(N_in ,))) – Trial input at time given params. For params['onset_time'] < time < params['onset_time'] + params['stim_duration'] , 1 is added to the noise in both channels, and params['coherence'] is also added in the channel corresponding to params[dir].

	y_t (ndarray(dtype=float, shape=(N_out ,))) – Correct trial output at time given params. From time > params['onset_time'] + params[stim_duration] + 20 onwards, the correct output is encoded using one-hot encoding. Until then, y_t is 0 in both channels.

	mask_t (ndarray(dtype=bool, shape=(N_out ,))) – True if the network should train to match the y_t, False if the network should ignore y_t when training. The mask is True for time > params['onset_time'] + params['stim_duration'] and False otherwise.

	Return type

	tuple

Getting Started

Each guide below includes a link to a Colab notebook that will let you experiment with each example on your own in the browser.

Contents:

	Hello World!

	Simple Example
	Set Seeds (optional)

	Initia